On a weighted Trudinger-Moser inequality in RN

Autor: Leandro G. Fernandes, Emerson Abreu
Rok vydání: 2020
Předmět:
Zdroj: Journal of Differential Equations. 269:3089-3118
ISSN: 0022-0396
DOI: 10.1016/j.jde.2020.02.023
Popis: We establish the Trudinger-Moser inequality on weighted Sobolev spaces in the whole space, and for a class of quasilinear elliptic operators in radial form of the type L u : = − r − θ ( r α | u ′ ( r ) | β u ′ ( r ) ) ′ , where θ , β ≥ 0 and α > 0 , are constants satisfying some existence conditions. It is worth emphasizing that these operators generalize the p-Laplacian and k-Hessian operators in the radial case. Our results involve fractional dimensions, a new weighted Polya-Szego principle, and a boundness value for the optimal constant in a Gagliardo-Nirenberg type inequality.
Databáze: OpenAIRE