On a weighted Trudinger-Moser inequality in RN
Autor: | Leandro G. Fernandes, Emerson Abreu |
---|---|
Rok vydání: | 2020 |
Předmět: |
Class (set theory)
Pure mathematics Inequality Applied Mathematics media_common.quotation_subject 010102 general mathematics Mathematics::Analysis of PDEs Type inequality Type (model theory) Space (mathematics) 01 natural sciences 010101 applied mathematics Sobolev space Elliptic operator Optimal constant 0101 mathematics Analysis media_common Mathematics |
Zdroj: | Journal of Differential Equations. 269:3089-3118 |
ISSN: | 0022-0396 |
DOI: | 10.1016/j.jde.2020.02.023 |
Popis: | We establish the Trudinger-Moser inequality on weighted Sobolev spaces in the whole space, and for a class of quasilinear elliptic operators in radial form of the type L u : = − r − θ ( r α | u ′ ( r ) | β u ′ ( r ) ) ′ , where θ , β ≥ 0 and α > 0 , are constants satisfying some existence conditions. It is worth emphasizing that these operators generalize the p-Laplacian and k-Hessian operators in the radial case. Our results involve fractional dimensions, a new weighted Polya-Szego principle, and a boundness value for the optimal constant in a Gagliardo-Nirenberg type inequality. |
Databáze: | OpenAIRE |
Externí odkaz: |