Exotic cluster structures on SL n with Belavin–Drinfeld data of minimal size, I. The structure

Autor: Idan Eisner
Rok vydání: 2017
Předmět:
Zdroj: Israel Journal of Mathematics. 218:391-443
ISSN: 1565-8511
0021-2172
DOI: 10.1007/s11856-017-1469-z
Popis: Using the notion of compatibility between Poisson brackets and cluster structures in the coordinate rings of simple Lie groups, Gekhtman, Shapiro and Vainshtein conjectured the existence of a cluster structure for each Belavin-Drinfeld solution of the classical Yang-Baxter equation compatible with the corresponding Poisson-Lie bracket on the simple Lie group. Poisson-Lie groups are classified by the Belavin-Drinfeld classification of solutions to the classical Yang-Baxter equation. For any non-trivial Belavin-Drinfeld data of minimal size for SLn, we give an algorithm for constructing an initial seed ∑ in O (SLn). The cluster structure C = C (∑) is then proved to be compatible with the Poisson bracket associated with that Belavin-Drinfeld data, and the seed ∑ is locally regular.
Databáze: OpenAIRE