Integrable cluster dynamics of directed networks and pentagram maps

Autor: Michael Shapiro, Serge Tabachnikov, Michael Gekhtman, Alek Vainshtein
Rok vydání: 2016
Předmět:
Zdroj: Advances in Mathematics. 300:390-450
ISSN: 0001-8708
DOI: 10.1016/j.aim.2016.03.023
Popis: The pentagram map was introduced by R. Schwartz more than 20 years ago. In 2009, V. Ovsienko, R. Schwartz and S. Tabachnikov established Liouville complete integrability of this discrete dynamical system. In 2011, M. Glick interpreted the pentagram map as a sequence of cluster transformations associated with a special quiver. Using compatibility of Poisson and cluster structures and Poisson geometry of directed networks on surfaces, we generalize Glick's construction to include the pentagram map into a family of discrete integrable maps and we give these maps geometric interpretations. The appendix relates the simplest of these discrete maps to the Toda lattice and its tri-Hamiltonian structure.
Databáze: OpenAIRE