A comparison of purification efficiencies of various constructed ecosystems (aquatic, semi-aquatic and terrestrial) receiving urban wastewaters

Autor: D. Cadelli, M. Nemcova, M. Radoux
Rok vydání: 1996
Předmět:
Zdroj: Wetlands Ecology and Management. 4:207-217
ISSN: 1572-9834
0923-4861
DOI: 10.1007/bf01879239
Popis: Tests were carried out under controlled conditions in the Experimental Plant of Viville (Arlon, Belgium) to enhance the purification of urban wastewater by “natural” means. The results demonstrate the need to structure treatment systems in a series of different artificial ecosystems (or a Hierarchical Mosaic of Artificial Ecosystems — MHEA in French). The first two levels we used were made up of an unplanted aquatic ecosystem (stabilization pond) followed by a semi-aquatic ecosystem planted withTypha latifolia L. in which the water flows over the substrate. At a flow rate of 4 m2/PE (1 PE=150 1/day of typical urban wastewaters in Belgian rural zones), this first stage substantially reduces suspended solids (SS), COD and BOD5, a significant amount of tot-N and tot-P, and reduces pathogens by 100-fold. Further, the system is easy to manage (sludge is eliminated in the first stage and biomass is collected in the second stage) and the treatment system does not clog up. Nevertheless, real and sustainable environmental protection demands even higher performance rates, and these first two stages, both in terms of design and dimension, can only be considered as a satisfactory part of a MHEA system. Artificial aquatic, semi-aquatic, and terrestrial ecosystems were systematically compared at the third and fourth stage of the system to increase the overall removal efficiency. The most complete and efficient system in our tests (i.e., the one that provides the most successful primary (SS), secondary (COD and BOD5) and tertiary (N and P) treatment and the best pathogens removal rates) was made up of 3 sequential series of ecosystems: an aquatic ecosystem whose flow went into a plantedTypha latifolia system (surface water flow), that flowed into a terrestrial ecosystem planted withAlnus glutinosa (L.) Gaertn (vertical subsurface water flow). A total surface area (stages 1–4) of 8 m2/PE ensured a high performance level whose outflow conformed to the strictest European norms.
Databáze: OpenAIRE