The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe–18Mn–0.6C twinning-induced plasticity steels
Autor: | Kook Hyun Jeong, Jae-Gil Jung, Il Jeong Park, Chong Soo Lee, Young Kook Lee |
---|---|
Rok vydání: | 2012 |
Předmět: |
Materials science
Hydrogen Renewable Energy Sustainability and the Environment Twip Metallurgy Energy Engineering and Power Technology chemistry.chemical_element Plasticity Strain rate Condensed Matter Physics Fuel Technology chemistry Ultimate tensile strength Crystal twinning Ductility Hydrogen embrittlement |
Zdroj: | International Journal of Hydrogen Energy. 37:9925-9932 |
ISSN: | 0360-3199 |
DOI: | 10.1016/j.ijhydene.2012.03.100 |
Popis: | High Mn twinning-induced plasticity (TWIP) steels are attractive for high performance applications owing to their extraordinary ductility at a giga-graded tensile strength level. Hydrogen delayed fracture (HDF) came to the fore as a key issue to be solved for the application of these steels. Although it was found that Al addition improved the resistance to HDF, the reason was unclear. Therefore, in this study, the fracture surfaces of annealed and hydrogen-charged TWIP steels with different Al contents were examined after slow strain rate tensile tests. Diffusible hydrogen was measured by thermal desorption analysis. It found that the strong resistance to HDF was due to an α-Al2O3 layer formed below the (Fe0.8Mn0.2)O layer during the hydrogen charging in an aqueous solution prevented the hydrogen to permeate into specimens from the surface. |
Databáze: | OpenAIRE |
Externí odkaz: |