Perturbation of in vivo neural activity following α-Synuclein seeding in the olfactory bulb

Autor: Jennifer A. Steiner, José I. Pena-Bravo, Tamara L. Suggs, Heather B. Stover, Patrik Brundin, Maria del Mar Cortijo, Elizabeth R. Roberts, Kelvin C. Luk, Daniel W. Wesson, Aishwarya S. Kulkarni
Rok vydání: 2020
Předmět:
DOI: 10.1101/2020.04.17.045013
Popis: BACKGROUNDParkinson’s disease (PD) neuropathology is characterized by intraneuronal protein aggregates composed of misfolded α-Synuclein (α-Syn), as well as degeneration of substantia nigra dopamine neurons. Deficits in olfactory perception and aggregation of α-Syn in the olfactory bulb (OB) are observed during early stages of PD, and have been associated with the PD prodrome, before onset of the classic motor deficits. α-Syn fibrils injected into the OB of mice cause progressive propagation of α-Syn pathology throughout the olfactory system and are coupled to olfactory perceptual deficits.OBJECTIVEWe hypothesized that accumulation of pathogenic α-Syn in the OB impairs neural activity in the olfactory system.METHODSTo address this, we monitored spontaneous and odor-evoked local field potential dynamics in awake wild type mice simultaneously in the OB and piriform cortex (PCX) one, two, and three months following injection of pathogenic preformed α-Syn fibrils in the OB.RESULTSWe detected α-Syn pathology in both the OB and PCX. We also observed that α-Syn fibril injections influenced odor-evoked activity in the OB. In particular, α-Syn fibril-injected mice displayed aberrantly high odor-evoked power in the beta spectral range. A similar change in activity was not detected in the PCX, despite high levels of α-Syn pathology.CONCLUSIONSTogether, this work provides evidence that synucleinopathy impacts in vivo neural activity in the olfactory system at the network-level.
Databáze: OpenAIRE