Popis: |
Machine vision plays an increasingly important role in industrial product quality detection. During processing, scratches, dents and other defects are inevitable on the surface of a smooth part. Although surface defects do not affect the overall performance of the product, their existence is unacceptable when a perfect product is required. The surface defect detection method based on machine vision and deep convolutional neural networks overcomes, to a certain extent, the problem of low detection efficiency, high false detection and missing detection rates in the traditional detection method. In this paper, a multistream semantic segmentation neural network is proposed to identify defects on smooth parts. Taking a seatbelt buckle as an example, the scratch and crush defects on the surface are classified. The network takes DeepLabV3+ as the framework and three types of image stream as the input of the network. In the backbone feature extraction network, the Xception structure is improved to MobilenetV2 and the convolutional block attention module (CBAM) is introduced into the decoding network, which improves the operational efficiency and accuracy. Compared with other classical networks, this network demonstrates good performance in the image dataset of the seatbelt buckle and realises fast and accurate semantic segmentation and classification of surface defects. The evaluation results of the network model have been significantly improved. |