Autor: |
Mohsen Safaei, Steven R. Anton, Eric C. Nolan, Mohammad Alshaikh Ali |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. |
Popis: |
This work investigates the application of structural health monitoring (SHM) in a dynamic environment with the electromechanical impedance (EMI) method. Classically, the EMI method monitors civil or mechanical structures for damage in static environments. Advances in data acquisition (DAQ) now allow the possibility of rapid damage detection in dynamic environments. An impact-based experimental setup is developed to create a repeatable dynamic event through a collision between a pneumatically actuated striker bar and a static incident bar instrumented with a piezoelectric transducer. The EMI method is employed to detect the change of state at the interface of the two colliding bars. Experimental results prove the pneumatic launching system is capable of repeatable dynamic events, but the duration of contact is only 0.03 ms and the current DAQ system is incapable of detecting the event. A 3D printed programming material interface is placed at the location of impact to increase the duration of contact to approximately 1 ms. An excitation signal is created to continuously sweep a 0.5 ms chirp signal with a frequency bandwidth from 60–70 kHz (previously identified damage sensitive frequency bandwidth from static testing) for 7.5 seconds. Results indicate that due to the sampling rate and sweep time of the excitation signal, the frequency resolution is not adequate to properly assess if the impact is detected. Improvements in the DAQ hardware must be considered for future work. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|