A concentration phenomenon of the least energy solution to non-autonomous elliptic problems with a totally degenerate potential

Autor: Shun Kodama
Rok vydání: 2017
Předmět:
Zdroj: Communications on Pure and Applied Analysis. 16:671-698
ISSN: 1534-0392
DOI: 10.3934/cpaa.2017033
Popis: In this paper we study the following non-autonomous singularly perturbed Dirichlet problem: \begin{document}${\varepsilon ^2}\Delta u -u + K(x)f(u) = 0, \; u > 0\quad {\rm{in}}\; \Omega, \quad u = 0\quad {\rm{on}}\; \partial \Omega, $ \end{document} for a totally degenerate potential K. Here e > 0 is a small parameter, $\Omega \subset \mathbb{R}^N$ is a bounded domain with a smooth boundary, and f is an appropriate superlinear subcritical function. In particular, f satisfies $0
Databáze: OpenAIRE