Number of arithmetic progressions in dense random subsets of ℤ/nℤ
Autor: | Mehtaab Sawhney, Ashwin Sah, Ross Berkowitz |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Israel Journal of Mathematics. 244:589-620 |
ISSN: | 1565-8511 0021-2172 |
Popis: | We examine the behavior of the number of k-term arithmetic progressions in a random subset of ℤ/nℤ. We prove that if a set is chosen by including each element of ℤ/nℤ independently with constant probability p, then the resulting distribution of k-term arithmetic progressions in that set, while obeying a central limit theorem, does not obey a local central limit theorem. The methods involve decomposing the random variable into homogeneous degree d polynomials with respect to the Walsh/Fourier basis. Proving a suitable multivariate central limit theorem for each component of the expansion gives the desired result. |
Databáze: | OpenAIRE |
Externí odkaz: |