Sharp characterization of optimal minibatch size for stochastic finite sum convex optimization

Autor: Atsushi Nitanda, Taiji Suzuki, Tomoya Murata
Rok vydání: 2021
Předmět:
Zdroj: Knowledge and Information Systems. 63:2513-2539
ISSN: 0219-3116
0219-1377
DOI: 10.1007/s10115-021-01593-1
Popis: The minibatching technique has been extensively adopted to facilitate stochastic first-order methods because of their computational efficiency in parallel computing for large-scale machine learning and data mining. Indeed, increasing the minibatch size decreases the iteration complexity (number of minibatch queries) to converge, resulting in the decrease of the running time by processing a minibatch in parallel. However, this gain is usually saturated for too large minibatch sizes and the total computational complexity (number of access to an example) is deteriorated. Hence, the determination of an appropriate minibatch size which controls the trade-off between the iteration and total computational complexities is important to maximize performance of the method with as few computational resources as possible. In this study, we define the optimal minibatch size as the minimum minibatch size with which there exists a stochastic first-order method that achieves the optimal iteration complexity and we call such a method the optimal minibatch method. Moreover, we show that Katyusha (in: Proceedings of annual ACM SIGACT symposium on theory of computing vol 49, pp 1200–1205, ACM, 2017), DASVRDA (Murata and Suzuki, in: Advances in neural information processing systems vol 30, pp 608–617, 2017), and the proposed method which is a combination of Acc-SVRG (Nitanda, in: Advances in neural information processing systems vol 27, pp 1574–1582, 2014) with APPA (Cotter et al. in: Advances in neural information processing systems vol 27, pp 3059–3067, 2014) are optimal minibatch methods. In experiments, we compare optimal minibatch methods with several competitors on $$L_1$$ -and $$L_2$$ -regularized logistic regression problems and observe that iteration complexities of optimal minibatch methods linearly decrease as minibatch sizes increase up to reasonable minibatch sizes and finally attain the best iteration complexities. This confirms the computational efficiency of optimal minibatch methods suggested by the theory.
Databáze: OpenAIRE