From RONS to ROS: Tailoring Plasma Jet Treatment of Skin Cells

Autor: Kai Masur, Jörn Winter, Kristian Wende, Klaus-Dieter Weltmann, H. Tresp, Stephan Reuter, Malte U. Hammer, Ansgar Schmidt-Bleker
Rok vydání: 2012
Předmět:
Zdroj: IEEE Transactions on Plasma Science. 40:2986-2993
ISSN: 1939-9375
0093-3813
DOI: 10.1109/tps.2012.2207130
Popis: Finding a solution for air species contamination of atmospheric pressure plasmas in plasma medical treatment is a major task for the new field of plasma medicine. Several approaches use complex climate chambers to control the surrounding atmosphere. In this paper, ambient species are excluded in plasma-human-skin-cell treatment by ensheathing the plasma jet effluent with a shielding gas. Not only does this gas curtain protect the plasma jet effluent from inflow of air species but it also, more importantly, allows controlling the effluent reactive species composition by adjusting the mixture of the shielding gas. In the present investigations, the mixture of nitrogen to oxygen within the gas curtain around an argon atmospheric pressure plasma jet (kinpen) is varied. The resulting reactive plasma components produced in the jet effluent are thus either oxygen or nitrogen dominated. With this gas curtain, the effect of reactive oxygen species (ROS) and reactive nitrogen species (RNS) on the cell viability of indirectly plasma-treated HaCaT skin cells is studied. This human keratinocyte cell line is an established standard for a skin model system. The cell viability is determined by a fluorometric assay, where metabolically active cells transform nonfluorescent resazurin to the highly fluorescent resorufin. Plasma jet and gas curtain are characterized by numerical flow simulation as well as by optical emission spectroscopy. The generation of nitrite within the used standard cell culture medium serves as a measure for generated RNS. Measurements with the leukodye dichlorodihydrofluorescein diacetate show that, despite a variation of the shielding gas mixture, the total amount of generated reactive oxygen plus nitrogen species is constant. It is shown that a plasma dominated by RNS disrupts cellular growth less than a ROS-dominated plasma.
Databáze: OpenAIRE