Classical Ideal Semigroups

Autor: Bruno Bosbach
Rok vydání: 2000
Předmět:
Zdroj: Results in Mathematics. 37:36-46
ISSN: 1420-9012
0378-6218
DOI: 10.1007/bf03322510
Popis: Based on the notion of an algebraic m-lattice Open image in new window an abstract commutative ideal theory for commutative monoids is developed. Open image in new window is called classical iff it is modular and if for each prime p the mapping \(a\mapsto \overline a\:=p+a\) satisfies \(\overline a \cdot \overline x =\overline a \cdot \overline \eta \Rightarrow \overline a=\overline p\ {\rm V}\ \overline x=\overline \eta \). Let Open image in new window be classical, then any ideal is a product of prime ideals iff Open image in new window satisfies the Noether property together with (M) \(a \supseteq b\Longrightarrow a \mid b\) or iff Open image in new window satisfies the Noether property together with the Sono property, that is \(m \supseteq x\supseteq m^2 \Longrightarrow m=x\ {\rm V}\ x=m^2\) (for maximal m).
Databáze: OpenAIRE