Low Temperature Analysis of Correlation Functions of the Blume–Emery–Griffiths Model at the Antiquadrupolar-Disordered Interface

Autor: Paulo C. Lima
Rok vydání: 2016
Předmět:
Zdroj: Journal of Statistical Physics. 165:645-660
ISSN: 1572-9613
0022-4715
DOI: 10.1007/s10955-016-1631-8
Popis: We show that at low temperatures the d dimensional Blume–Emery–Griffiths model in the antiquadrupolar-disordered interface has all its infinite volume correlation functions \(\left\langle \prod _{i\in A}\sigma _i^{n_i}\right\rangle _{\tau }\), where \(A\subset \mathbb {Z}^d\) is finite and \(\sum _{i\in A}n_i\) is odd, equal zero, regardless of the boundary condition \(\tau \). In particular, the magnetization \(\langle \sigma _i\rangle _{\tau }\) is zero, for all \(\tau \). We also show that the infinite volume mean magnetization \(\lim _{\Lambda \rightarrow \infty }\Big \langle \frac{1}{|\Lambda |}\sum _{i\in \Lambda }\sigma _i\Big \rangle _{\Lambda ,\tau }\) is zero, for all \(\tau \).
Databáze: OpenAIRE
načítá se...