Low Temperature Analysis of Correlation Functions of the Blume–Emery–Griffiths Model at the Antiquadrupolar-Disordered Interface
Autor: | Paulo C. Lima |
---|---|
Rok vydání: | 2016 |
Předmět: |
High Energy Physics::Phenomenology
Infinite volume Zero (complex analysis) Statistical and Nonlinear Physics Lambda 01 natural sciences 010305 fluids & plasmas Mathematics::Group Theory Quantum mechanics 0103 physical sciences 010306 general physics Mathematical Physics Mathematical physics Mathematics |
Zdroj: | Journal of Statistical Physics. 165:645-660 |
ISSN: | 1572-9613 0022-4715 |
DOI: | 10.1007/s10955-016-1631-8 |
Popis: | We show that at low temperatures the d dimensional Blume–Emery–Griffiths model in the antiquadrupolar-disordered interface has all its infinite volume correlation functions \(\left\langle \prod _{i\in A}\sigma _i^{n_i}\right\rangle _{\tau }\), where \(A\subset \mathbb {Z}^d\) is finite and \(\sum _{i\in A}n_i\) is odd, equal zero, regardless of the boundary condition \(\tau \). In particular, the magnetization \(\langle \sigma _i\rangle _{\tau }\) is zero, for all \(\tau \). We also show that the infinite volume mean magnetization \(\lim _{\Lambda \rightarrow \infty }\Big \langle \frac{1}{|\Lambda |}\sum _{i\in \Lambda }\sigma _i\Big \rangle _{\Lambda ,\tau }\) is zero, for all \(\tau \). |
Databáze: | OpenAIRE |
Externí odkaz: |
načítá se...