Biotransformation of sesaminol triglycoside by intestinal microflora of swine supplemented with probiotic or antibiotic diet

Autor: Kuo-Ching Jan, Tzu-Yi Wang, Lucy Sun Hwang, Mohsen Gavahian
Rok vydání: 2022
Předmět:
Zdroj: Quality Assurance and Safety of Crops & Foods. 14:19-29
ISSN: 1757-837X
1757-8361
DOI: 10.15586/qas.v14i3.1027
Popis: Lignans, found throughout the plant kingdom, are complex diphenolic chemicals that act as phytoestrogens. The main lignan component in sesame flour is sesaminol triglucoside (STG). In vivo, STG is converted into antioxidant sesaminol, mammalian lignans enterodiol, and enterolactone. Thus, use of antibiotics may impact the conversion of lignans to enterolactone. The present study investigated the metabolism of STG by microorganisms in swine-fed diets supplemented with either probiotics or antibiotics. It was observed that microorganisms from swine-fed probiotics helped with hydrolyzing the glucose unit of STG and generated metabolite 2-hydroxymethyl sesaminol- tetrahydrofuran (ST-2) as compared to antibiotic diet. It was also observed that bacteria that converted sesaminol to ST-2 were oxygen-sensitive and it was hypothesized that these were anaerobes. While Lactobacillus and Bifidobacterium were more prevalent in probiotic-fed swine feces, both groups of swine had a healthy mix of helpful and detrimental bacteria. All selective investigated microorganisms (Lactobacillus, Bifidobacterium, and Clostridium perfringens) could hydrolyze the glucose unit of STG; however, lactic acid bacteria contributed least. In conclusion, the bacteria found in the feces of swine-fed probiotics had a greater ability to digest STG. It can be concluded that the biotransformation of STG could be attributable to anaerobes, but Lactobacillus and Bifidobacterium could balance intestinal flora.
Databáze: OpenAIRE