On the arcsine law on divisors in arithmetic progressions

Autor: Bin Feng
Rok vydání: 2016
Předmět:
Zdroj: Indagationes Mathematicae. 27:749-763
ISSN: 0019-3577
DOI: 10.1016/j.indag.2016.01.008
Popis: Suppose q is not a Siegel ‘exceptional’ modulus and let e be sufficiently small positive constant, in this paper, we show that the arcsine law on divisors holds in arithmetic progressions for q ⩽ exp { ( 1 4 − e ) ( log 2 x ) 2 } , which generalizes the known result investigated by Deshouillers, Dress & Tenenbaum.
Databáze: OpenAIRE