An axiomatic approach to CG′3 logic
Autor: | Mauricio Osorio Galindo, José R. Arrazola Ramírez, Miguel Pérez-Gaspar, Alejandro Hernández-Tello |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Logic Journal of the IGPL. 28:1218-1232 |
ISSN: | 1368-9894 1367-0751 |
DOI: | 10.1093/jigpal/jzaa014 |
Popis: | In memoriam José Arrazola Ramírez (1962–2018) The logic $\textbf{G}^{\prime}_3$ was introduced by Osorio et al. in 2008; it is a three-valued logic, closely related to the paraconsistent logic $\textbf{CG}^{\prime}_3$ introduced by Osorio et al. in 2014. The logic $\textbf{CG}^{\prime}_3$ is defined in terms of a multi-valued semantics and has the property that each theorem in $\textbf{G}^{\prime}_3$ is a theorem in $\textbf{CG}^{\prime}_3$. Kripke-type semantics has been given to $\textbf{CG}^{\prime}_3$ in two different ways by Borja et al. in 2016. In this work, we continue the study of $\textbf{CG}^{\prime}_3$, obtaining a Hilbert-type axiomatic system and proving a soundness and completeness theorem for this logic. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |