Reliability assessment and improvement for a fast corrector power supply in TPS

Autor: Yong Seng Wong, Kuo-Bin Liu, Bao-sheng Wang, Chen-Yao Liu
Rok vydání: 2018
Předmět:
Zdroj: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 896:53-59
ISSN: 0168-9002
DOI: 10.1016/j.nima.2018.04.015
Popis: Fast Orbit Feedback System (FOFB) can be installed in a synchrotron light source to eliminate undesired disturbances and to improve the stability of beam orbit. The design and implementation of an accurate and reliable Fast Corrector Power Supply (FCPS) is essential to realize the effectiveness and availability of the FOFB. A reliability assessment for the FCPSs in the FOFB of Taiwan Photon Source (TPS) considering MOSFETs’ temperatures is represented in this paper. The FCPS is composed of a full-bridge topology and a low-pass filter. A Hybrid Pulse Width Modulation (HPWM) requiring two MOSFETs in the full-bridge circuit to be operated at high frequency and the other two be operated at the output frequency is adopted to control the implemented FCPS. Due the characteristic of HPWM, the conduction loss and switching loss of each MOSFET in the FCPS is not same. Two of the MOSFETs in the full-bridge circuit will suffer higher temperatures and therefore the circuit reliability of FCPS is reduced. A Modified PWM Scheme (MPWMS) designed to average MOSFETs’ temperatures and to improve circuit reliability is proposed in this paper. Experimental results measure the MOSFETs’ temperatures of FCPS controlled by the HPWM and the proposed MPWMS. The reliability indices under different PWM controls are then assessed. From the experimental results, it can be observed that the reliability of FCPS using the proposed MPWMS can be improved because the MOSFETs’ temperatures are closer. Since the reliability of FCPS can be enhanced, the availability of FOFB can also be improved.
Databáze: OpenAIRE