Symmetric algebras in categories of corepresentations and smash products
Autor: | Constantin Nastasescu, Sorin Dascalescu, Laura Nastasescu |
---|---|
Rok vydání: | 2016 |
Předmět: |
Symmetric algebra
Pure mathematics Algebra and Number Theory Triple system Smash product Mathematics::Rings and Algebras 010102 general mathematics Representation theory of Hopf algebras Hopf algebra 01 natural sciences Algebra symbols.namesake Mathematics::Quantum Algebra Mathematics::Category Theory 0103 physical sciences Frobenius algebra symbols Division algebra 010307 mathematical physics 0101 mathematics Frobenius theorem (real division algebras) Mathematics |
Zdroj: | Journal of Algebra. 465:62-80 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2016.07.012 |
Popis: | We investigate Frobenius algebras and symmetric algebras in the monoidal category of right comodules over a Hopf algebra H; for the symmetric property H is assumed to be cosovereign. If H is finite dimensional and A is an H-comodule algebra, we uncover the connection between A and the smash product A#H⁎ with respect to the Frobenius and symmetric properties. |
Databáze: | OpenAIRE |
Externí odkaz: |