Popis: |
Considering backlash, radial clearance of bearing and time-varying mesh stiffness, nonlinear dynamic model of gear bearing rotor system is established considering unbalance and loosening fault. Nonlinear dynamic equations are solved using Runge-Kutta method and Newton-Raphson method. Numerical simulations of the dynamic equations and the affection of the depth of crack and length of wear to the nonlinear dynamic behavior are studied. The results shows that tooth off, bilateral impact phenomenon are occurred, with increasing gear failure when unbalance occurs, and the gear system exhibits a diverse range of periodic, quasi-periodic and chaotic motion. When loosening fault occurs, the range of chaos motion is increased, and gear burnishing is also intensified. |