City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials
Autor: | Kai Zosseder, Alejandro García-Gil, Matthias H. Mueller, Peter Huggenberger, Fabian Böttcher, Jannis Epting |
---|---|
Rok vydání: | 2020 |
Předmět: |
060102 archaeology
Petroleum engineering Groundwater flow Renewable Energy Sustainability and the Environment business.industry 020209 energy Geothermal energy Fossil fuel Thermal power station 06 humanities and the arts 02 engineering and technology Energy planning law.invention law Waste heat 0202 electrical engineering electronic engineering information engineering Environmental science 0601 history and archaeology business Groundwater Heat pump |
Zdroj: | Renewable Energy. 147:751-763 |
ISSN: | 0960-1481 |
Popis: | One solution for reducing the current consumption of fossil fuels is a more frequent use of shallow geothermal energy. However, particularly regarding urban subsurface resources, increased use conflicts are predictable. Consequently, reasonable exploitation of subsurface resources requires an assessment of technologically achievable energy potentials with scientific based tools. We present application-oriented management tools which target on deriving shallow subsurface energy potentials. 3D groundwater flow and heat-transport models are used to capture groundwater flow and heat-transport dynamics on the city- and quarter-scale, 2D box models are used to quantify technically feasible extraction rates of well doublets for groundwater heat pump systems. For Basel (Switzerland), prospective large theoretical energy potentials can be derived for areas with high advective heat flux and high temperature gradients. Likewise, single city quarters are suitable for ‘active’ thermal use with well doublets, whereas thermal power potentials reach 1.2 MW. Regarding ‘passive’ installations of energy absorbers in subsurface structures located within the groundwater, energy potentials amount to 4 and up to 40 W m−2. The assessment results can be integrated into urban energy plans and support architects, city planners and potential users to acquire initial site-specific information on the technical feasibility of shallow geothermal energy systems. |
Databáze: | OpenAIRE |
Externí odkaz: |