Local Sobolev constant estimate for integral Ricci curvature bounds
Autor: | Guofang Wei, Xianzhe Dai, Zhenlei Zhang |
---|---|
Rok vydání: | 2018 |
Předmět: |
Hessian matrix
General Mathematics 010102 general mathematics Mathematical analysis Maximal principle 01 natural sciences Sobolev space symbols.namesake 0103 physical sciences symbols Mathematics::Differential Geometry 010307 mathematical physics 0101 mathematics Constant (mathematics) Gradient estimate Ricci curvature Heat kernel Mathematics |
Zdroj: | Advances in Mathematics. 325:1-33 |
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2017.11.024 |
Popis: | We obtain a local Sobolev constant estimate for integral Ricci curvature, which enables us to extend several important tools such as the maximal principle, the gradient estimate, the heat kernel estimate and the L 2 Hessian estimate to manifolds with integral Ricci lower bounds, without the non-collapsing conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |