On sufficient conditions for a graph to be \(k\)-path-coverable, \(k\)-edge-hamiltonian, Hamilton-connected, traceable and \(k^{-}\)-independent
Autor: | Junjiang Li, Huichao Shi, Fuguo Liu, Guifu Su |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Open Journal of Discrete Applied Mathematics. 3:66-76 |
ISSN: | 2617-9687 2617-9679 |
DOI: | 10.30538/psrp-odam2020.0045 |
Popis: | The inverse degree of a graph was defined as the sum of the inverses of the degrees of the vertices. In this paper, we focus on finding sufficient conditions in terms of the inverse degree for a graph to be \(k\)-path-coverable, \(k\)-edge-hamiltonian, Hamilton-connected and traceable, respectively. The results obtained are not dropped. |
Databáze: | OpenAIRE |
Externí odkaz: |