Geometry and multidimensional soliton equations
Autor: | Ratbay Myrzakulov, Gulgasyl Nugmanova, A. K. Danlybaeva |
---|---|
Rok vydání: | 1999 |
Předmět: |
Camassa–Holm equation
Integrable system Differential equation Mathematical analysis First-order partial differential equation Statistical and Nonlinear Physics Differential geometry of curves Geometry Dispersionless equation Nonlinear Sciences::Exactly Solvable and Integrable Systems Soliton Korteweg–de Vries equation Mathematical Physics Mathematics |
Zdroj: | Theoretical and Mathematical Physics. 118:347-356 |
ISSN: | 1573-9333 0040-5779 |
DOI: | 10.1007/bf02557332 |
Popis: | The connection between the differential geometry of curves and (2+1)-dimensional integrable systems is established. The Zakharov equation, the modified Veselov-Novikov equation, the modified Kortewegde Vries equation, etc., are equivalent in the Lakshmanan sense to (2+1)-dimensional spin systems. |
Databáze: | OpenAIRE |
Externí odkaz: |