Activity Minimization of Misinformation Influence in Online Social Networks
Autor: | Guoqing Wang, Jianming Zhu, Peikun Ni |
---|---|
Rok vydání: | 2020 |
Předmět: |
Theoretical computer science
Social network Computer science Heuristic (computer science) business.industry Node (networking) 02 engineering and technology Trusted Network Connect 01 natural sciences Submodular set function Human-Computer Interaction Modeling and Simulation 0103 physical sciences 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Misinformation 010306 general physics Greedy algorithm business Social Sciences (miscellaneous) Block (data storage) |
Zdroj: | IEEE Transactions on Computational Social Systems. 7:897-906 |
ISSN: | 2373-7476 |
DOI: | 10.1109/tcss.2020.2997188 |
Popis: | In recent years, online social media has flourished, and a large amount of information has spread through social platforms, changing the way in which people access information. The authenticity of information content is weakened, and all kinds of misinformation rely on social media to spread rapidly. Network space governance and providing a trusted network environment are of critical significance. In this article, we study a novel problem called activity minimization of misinformation influence (AMMI) problem that blocks a node set from the network such that the total amount of misinformation interaction between nodes (TAMIN) is minimized. That is to say, the AMMI problem is to select $K$ nodes from a given social network $G$ to block so that the TAMIN is the smallest. We prove that the objective function is neither submodular nor supermodular and propose a heuristic greedy algorithm (HGA) to select top $K$ nodes for removal. Furthermore, in order to evaluate our proposed method, extensive experiments have been carried out on three real-world networks. The experimental results demonstrate that our proposed method outperforms comparison approaches. |
Databáze: | OpenAIRE |
Externí odkaz: |