Popis: |
A new coronavirus pandemic COVID-19, caused by Severe Acute Respiratory Syndrome coronavirus (SARS-CoV-2), poses a serious threat across continents, leading the World Health Organization to declare a Public Health Emergency of International Concern. In order to block the entry of the virus into human host cells, major therapeutic and vaccine design efforts are now targeting the interactions between the SARS-CoV-2 spike (S) glycoprotein and the human cellular membrane receptor angiotensin-converting enzyme, hACE2. By analyzing cryo-EM structures of SARS-CoV-2 and SARS-CoV-1, we report here that the homotrimer SARS-CoV-2 S receptor-binding domain (RBD) that binds with hACE2 has expanded in size, undergoing a large conformational change relative to SARS-CoV-1 S protein. Protomer with the up-conformational form of RBD, which binds with hACE2, exhibits higher intermolecular interactions at the RBD-ACE2 interface, with differential distributions and the inclusion of specific H-bonds in the CoV-2 complex. Further interface analysis has shown that interfacial water promotes and stabilizes the formation of CoV-2/hACE2 complex. This interaction has caused a significant structural rigidification, favoring proteolytic processing of S protein for the fusion of the viral and cellular membrane. Moreover, conformational dynamics simulations of RBD motions in SARS-CoV-2 and SARS-CoV-1 point to the role in modification in the RBD dynamics and their likely impact on infectivity. |