Impact of the trailing edge shape of a downstream dummy vehicle on train aerodynamics subjected to crosswind
Autor: | Miao Yu, Tanghong Liu, Zijian Guo, Xiaoshuai Huo, Tian-Tian Wang, Wenhui Li, Zhengwei Chen |
---|---|
Rok vydání: | 2020 |
Předmět: |
010504 meteorology & atmospheric sciences
Mechanical Engineering Aerodynamics Aerodynamic coefficient 01 natural sciences 010305 fluids & plasmas Downstream (manufacturing) 0103 physical sciences Environmental science Trailing edge Train 0105 earth and related environmental sciences Crosswind Wind tunnel Marine engineering |
Zdroj: | Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 235:201-214 |
ISSN: | 2041-3017 0954-4097 |
DOI: | 10.1177/0954409720915039 |
Popis: | Wind tunnel tests for trains under large yaw angles are usually limited due to the width of the wind tunnel. Therefore, the leading car and a downstream dummy vehicle model are often employed instead of a real train, but there are no clear regulations regarding the shape of the end of the dummy vehicle. This paper studied the impact of the trailing edge shape of the downstream dummy vehicle on train aerodynamics subjected to crosswind based on the shear-stress-transport k-ω turbulence model of the delayed detached eddy simulation. Three types of end shapes, namely the rectangular end shape, the arc end shape, and the streamlined end shape were chosen for comparison, and the simulation results of the three-car-group train were selected as the benchmark. First, the reliability of the numerical method was validated by wind tunnel tests. Then, the aerodynamic coefficients under yaw angles of 0°–60° and the surface pressure distributions and flow structures around the train under the yaw angle of 60° of the head cars with different end shapes were compared and analyzed. |
Databáze: | OpenAIRE |
Externí odkaz: |