On a question of f-exunits in $$\mathbb {Z}/n\mathbb {Z}$$
Autor: | Bidisha Roy, Anand, Jaitra Chattopadhyay |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Archiv der Mathematik. 116:403-409 |
ISSN: | 1420-8938 0003-889X |
DOI: | 10.1007/s00013-020-01558-w |
Popis: | In a commutative ring R with unity, a unit u is called exceptional if $$u-1$$ is also a unit. For $$R = {\mathbb {Z}}/n{\mathbb {Z}}$$ and for any $$f(X) \in {\mathbb {Z}}[X]$$ , an element $${\overline{u}} \in {\mathbb {Z}}/n{\mathbb {Z}}$$ is called an “f-exunit” if $$gcd(f(u),n) = 1$$ . Recently, we obtained the number of representations of a non-zero element of $${\mathbb {Z}}/n{\mathbb {Z}}$$ as a sum of two f-exunits for a particular infinite family of polynomials $$f(X) \in {\mathbb {Z}}[X]$$ . In this paper, we complete this problem by proving a similar formula for any non-constant polynomial $$f(X) \in {\mathbb {Z}}[X]$$ . |
Databáze: | OpenAIRE |
Externí odkaz: |