Autor: |
John C. Vaccaro, David M. Rooney, Patrick Mortimer |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fluid Dynamics of Wind Energy; Bubble, Droplet, and Aerosol Dynamics. |
DOI: |
10.1115/fedsm2018-83357 |
Popis: |
An experimental investigation into the flow field behind baseballs at two different seam orientations as well as a smooth sphere of the same diameter was undertaken at Reynolds numbers of 5 × 104 and 1 × 105. The rotational speed of the three spheres varied from 0 to 2400 rpm, with data collected in increments of 400 rpm which correspond to relative spin rates between 0 and 0.94. Mean velocity profiles, turbulence in intensity profiles, and power spectral density of the signals were taken using hot-wire anemometry. The smooth sphere wake was seen to change in orientation over a range of relative rotational speeds. The Strouhal number remained constant around 0.24 for relatively low spin rates. The seams on the baseball suppressed any measurable vortex shedding once rotation began, also eliminating any significant change in wake orientation as evidenced by the mean velocity deficit and turbulence intensity profiles. It was concluded that the so-called inverse Magnus effect recorded by previous investigators at a specific Reynolds number / relative rotational speed of a sphere exists only for a smooth sphere and not for a sphere where the boundary layer separation is governed by raised seams. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|