An Estimate for the Degree Bound of a Matrix of Polynomials
Autor: | Anupan Netyanun, Hyun-Kyoung Kwon, Tavan T. Trent |
---|---|
Rok vydání: | 2016 |
Předmět: |
Sylvester matrix
Gegenbauer polynomials Applied Mathematics Discrete orthogonal polynomials 010102 general mathematics 01 natural sciences Polynomial matrix Combinatorics Classical orthogonal polynomials Computational Mathematics Computational Theory and Mathematics Difference polynomials Orthogonal polynomials 0101 mathematics Pascal matrix Mathematics |
Zdroj: | Complex Analysis and Operator Theory. 12:101-109 |
ISSN: | 1661-8262 1661-8254 |
DOI: | 10.1007/s11785-016-0590-z |
Popis: | We present a constructive method for finding a right inverse matrix of a matrix of polynomials that satisfies the corona condition. The right inverse matrix is also a matrix of polynomials and our method gives an upper bound for the degree of its entries. This is a generalization of the authors’ previous result that offers a degree bound for the polynomials that arise as a result of the Nullstellensatz. |
Databáze: | OpenAIRE |
Externí odkaz: |