Popis: |
The demonstrated in vitro and in vivo activity of 3′-azido-3′-deoxythymidine (N3dThd) against the infectivity and the cytopathic effect of human immunodeficiency virus has prompted an investigation of the mechanism by which this nucleoside analogue permeates the cell membrane. As with the transport of thymidine, the influx of N3dThd into human erythrocytes and lymphocytes was nonconcentrative during short incubation times (less than 5 min) which did not allow significant metabolism of this nucleoside. However, in contrast with thymidine transport, the initial velocity of N3dThd influx was strictly a linear function of nucleoside concentration (0.5-10 mM), without evidence of saturability; insensitive to micromolar concentrations of potent inhibitors of nucleoside transport (dipyridamole, 6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, and dilazep); insensitive to a 1000-fold excess of other nucleosides (thymidine, uridine, 2-chloroadenosine); and relatively insensitive to temperature, with Q10 values (37-27 degrees C) of 1.4 and 2.7 for N3dThd and thymidine, respectively, determined in erythrocytes. Although the above results indicate that N3dThd permeates the cell membrane chiefly by nonfacilitated diffusion and not via the nucleoside transporter, millimolar concentrations of this nucleoside analogue were observed to inhibit both zero-trans influx of thymidine and efflux of thymidine from [3H]thymidine-loaded erythrocytes. The partition coefficients (1-octanol:0.1 M sodium phosphate, pH 7.0) of N3dThd and thymidine were determined to be 1.26 and 0.064, respectively. The unusual ability of N3dThd to diffuse across cell membranes independently of the nucleoside transport system may be attributed to the considerable lipophilicity imparted to this molecule by the replacement of the 3′-hydroxyl group of thymidine with an azido moiety. |