Investigation of gasoline containing GTL naphtha in a spark ignition engine at full load conditions
Autor: | Chongming Wang, Hongming Xu, Andreas Janssen, Roger Cracknell, Jasprit Chahal |
---|---|
Rok vydání: | 2017 |
Předmět: |
Waste management
020209 energy General Chemical Engineering Organic Chemistry Energy Engineering and Power Technology 02 engineering and technology law.invention Ignition system Gas to liquids chemistry.chemical_compound 020303 mechanical engineering & transports Fuel Technology 0203 mechanical engineering chemistry law Spark-ignition engine 0202 electrical engineering electronic engineering information engineering Fuel efficiency Environmental science Octane rating Gasoline Naphtha Octane |
Zdroj: | Fuel. 194:436-447 |
ISSN: | 0016-2361 |
DOI: | 10.1016/j.fuel.2017.01.042 |
Popis: | Gas-to-liquid (GTL) naphtha can be used as a gasoline blend component, and the challenge of its low octane rating is solved by using ethanol as an octane booster. However, currently there is little knowledge available about the performance of gasolines containing GTL naphtha in spark ignition engines. The objective of this work is to assess full load performance of gasoline fuels containing GTL naphtha in a modern spark ignition engine. In this study, four new gasoline fuels containing up to 23.5 vol.% GTL naphtha, and a standard EN228 gasoline fuel (reference fuel) were tested. These new gasoline fuels all had similar octane rating with that of the standard EN228 gasoline fuel. The experiments were conducted in an AVL single cylinder spark ignition research engine under full load conditions in the engine speed range of 1000–4500 rpm. Two modern engine configurations, a boosted direct injection (DI) and a port fuel injection (PFI), were used. A comprehensive thermodynamic analysis was carried out to correlate experiment data with fuel properties. The results show that, at the full load operating conditions the combustion characteristics and emissions of those gasoline fuels containing GTL naphtha were comparable to those of the standard EN228 gasoline fuel. Volumetric fuel consumption of fuels with high GTL naphtha content was higher due to the need of adding more ethanol to offset the reduced octane rating caused by GTL naphtha. Results also indicate that, compared to the conventional compliant E228 gasoline fuel, lower particulate emissions were observed in gasoline fuels containing up to 15.4 vol.% GTL naphtha. |
Databáze: | OpenAIRE |
Externí odkaz: |