On subgroup functors of finite soluble groups
Autor: | S. F. Kamornikov, Enric Cosme-Llópez, Adolfo Ballester-Bolinches |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
Finite group Pure mathematics Transitive relation Functor General Mathematics media_common.quotation_subject 010102 general mathematics Lattice (discrete subgroup) 01 natural sciences Fitting subgroup Universe 010101 applied mathematics Omega and agemo subgroup 0101 mathematics Characteristic subgroup media_common Mathematics |
Zdroj: | Science China Mathematics. 60:439-448 |
ISSN: | 1869-1862 1674-7283 |
Popis: | The principal aim of this paper is to study the regular and transitive subgroup functors in the universe of all finite soluble groups. We prove that they form a complemented and non-modular lattice containing two relevant sublattices. This is the answer to a question (Question 1.2.12) proposed by Skiba (1997) in the finite soluble universe. |
Databáze: | OpenAIRE |
Externí odkaz: |