Artificial neural network-based prediction of field permeability of hot mix asphalt pavement layers
Autor: | Rajib B. Mallick, M. K. Nivedya |
---|---|
Rok vydání: | 2018 |
Předmět: |
endocrine system
050210 logistics & transportation Materials science Artificial neural network Field (physics) 05 social sciences 0211 other engineering and technologies 02 engineering and technology Permeability (earth sciences) Premature failure Asphalt pavement Mechanics of Materials Asphalt 021105 building & construction 0502 economics and business Air voids Geotechnical engineering Gradation Civil and Structural Engineering |
Zdroj: | International Journal of Pavement Engineering. 21:1057-1068 |
ISSN: | 1477-268X 1029-8436 |
DOI: | 10.1080/10298436.2018.1519189 |
Popis: | Field permeability of Hot Mix Asphalt (HMA) needs to be controlled to prevent excessive ingress of water into asphalt pavements, which leads to premature failure. Existing literature shows scatter ... |
Databáze: | OpenAIRE |
Externí odkaz: |