Perforated nanocap array: Facile fabrication process and efficient surface enhanced Raman scattering with fluorescence suppression

Autor: Weiwei Zhang, Liqing Huang, Jun Wang, Lin Yuan, Huimin Tong, Lihua Zhao, Xuehong Feng, Ai-Wen Hao, Dong-Zhi Shan, Lipeng Zhai
Rok vydání: 2013
Předmět:
Zdroj: Chinese Physics B. 22:047301
ISSN: 1674-1056
DOI: 10.1088/1674-1056/22/4/047301
Popis: Recently, individual reduced-symmetry metal nanostructures and their plasmonic properties have been studied extensively. However, little attention has been paid to the approach to fabricating ordered reduced-symmetry metal nanostructure arrays. In this paper, a novel perforated silver nanocap array with high surface-enhanced Raman scattering (SERS) activity and fluorescence suppression is reported. The array is fabricated by electron beam evaporating Ag onto the perforated barrier layer side of a hard anodization (HA) anodic aluminum oxide (AAO) template. The morphology and optical property of the perforated silver nanocap array are characterized by an atomic force microscope (AFM), a scanning electron microscope (SEM), and absorption spectra. The results of SERS measurements reveal that the perforated silver nanocap array offers high SERS activity and fluorescence suppression compared with an imperforated silver nanocap array.
Databáze: OpenAIRE