Non-additive Lie centralizer of infinite strictly upper triangular matrices

Autor: D. A. Aiat ‎Hadj
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Linear and Topological Algebra, Vol 08, Iss 04, Pp 251-255 (2019)
ISSN: 2345-5934
2252-0201
Popis: ‎Let $mathcal{F}$ be an field of zero characteristic and $N_{infty‎}(‎mathcal{F})$ be the algebra of infinite strictly upper triangular‎ ‎matrices with entries in $mathcal{F}$‎, ‎and $f:N_{infty}(mathcal{F}‎)rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $‎N_{infty }(mathcal{F})$; that is‎, ‎a map satisfying that $f([X,Y])=[f(X),Y]$‎ ‎for all $X,Yin N_{infty}(mathcal{F})$‎. ‎We prove that $f(X)=lambda X$‎, ‎where $lambda in mathcal{F}$‎.
Databáze: OpenAIRE