Non-additive Lie centralizer of infinite strictly upper triangular matrices
Autor: | D. A. Aiat Hadj |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Journal of Linear and Topological Algebra, Vol 08, Iss 04, Pp 251-255 (2019) |
ISSN: | 2345-5934 2252-0201 |
Popis: | Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})$. We prove that $f(X)=lambda X$, where $lambda in mathcal{F}$. |
Databáze: | OpenAIRE |
Externí odkaz: |