Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery

Autor: Nabar GM, Mahajan KD, Calhoun MA, Duong AD, Souva MS, Xu J, Czeisler C, Puduvalli VK, Otero JJ, Wyslouzil BE, Winter JO
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: International Journal of Nanomedicine, Vol Volume 13, Pp 351-366 (2018)
ISSN: 1178-2013
Popis: Gauri M Nabar,1 Kalpesh D Mahajan,1 Mark A Calhoun,2 Anthony D Duong,1 Matthew S Souva,1 Jihong Xu,3,4 Catherine Czeisler,5 Vinay K Puduvalli,3,4 José Javier Otero,5 Barbara E Wyslouzil,1,6 Jessica O Winter1,2 1William G Lowrie Department of Chemical and Biomolecular Engineering, 2Department of Biomedical Engineering, 3Division of Neuro-oncology, College of Medicine, The Ohio State University Comprehensive Cancer Center, 4Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurosurgery, College of Medicine, The Ohio State University Comprehensive Cancer Center, 5Department of Pathology and the Neurological Research Institute, College of Medicine, 6Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA Purpose: Poly(lactic-co-glycolic acid) (PLGA) is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs), as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches.Methods: Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, “PolyDots”), consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene-b-ethylene oxide) (PS-b-PEO) micelles.Results: PolyDots exhibit average diameters
Databáze: OpenAIRE