Rotated $D_n$-lattices in dimensions power of $3$

Autor: Agnaldo José Ferrari, Grasiele Cristiane Jorge, Antonio Aparecido Andrade
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Journal of Algebra Combinatorics Discrete Structures and Applications, Vol 8, Iss 3 (2021)
Popis: In this work, we present constructions of families of rotated $D_n$-lattices which may be good for signal transmission over both Gaussian and Rayleigh fading channels. The lattices are obtained as sublattices of a family of rotated $\mathbb{Z} \oplus \mathcal{A}_{2}^{k}$ lattices, where $\mathcal{A}_{2}^{k}$ is a direct sum of $k=\frac{3^{r-1}-1}{2}$ copies of the $A_2$-lattice, using free $\mathbb{Z}$-modules in $\mathbb{Z}[\zeta_{3^{r}}+\zeta_{3^{r}}^{-1}]$.
Databáze: OpenAIRE