Asymmetrical Evaluation of Forecasting Models Through Fresh Food Product Characteristics

Autor: Christensen, Flemming Max Møller, Dukovska-Popovska, Iskra, Bojer, Casper Solheim, Steger-Jensen, Kenn
Přispěvatelé: Ameri, Farhad, Stecke, Kathryn E., von Cieminski, Gregor, Kiritsis, Dimitris
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Christensen, F M M, Dukovska-Popovska, I, Bojer, C S & Steger-Jensen, K 2019, Asymmetrical Evaluation of Forecasting Models Through Fresh Food Product Characteristics . in F Ameri, K E Stecke, G von Cieminski & D Kiritsis (eds), Advances in Production Management Systems. Production Management for the Factory of the Future : IFIP WG 5.7 International Conference, APMS 2019, Austin, TX, USA, September 1–5, 2019, Proceedings, Part I . vol. 1, Springer, IFIP AICT-Advances in Information and Communication technology, vol. 566, pp. 155-163, IFIP WG 5.7 International Conference, APMS 2019, Austin, Texas, United States, 01/09/2019 . https://doi.org/10.1007/978-3-030-30000-5_21
DOI: 10.1007/978-3-030-30000-5_21
Popis: Forecasting accuracy in context of fresh meat products with short shelf life is studied. Main findings are that forecasting accuracy measures (i.e. errors) should penalize deviations differently according to product characteristics, mainly dependent on whether the deviation is large or small, negative or positive. This study proposes a decision-based mean hybrid evaluation which penalize deviations according to type of animal, demand type, product life cycle and product criticality, i.e. shelf life, inventory level and future demand.
Databáze: OpenAIRE