ON THE (DELTA,f)-LACUNARY STATISTICAL CONVERGENCE OF THE FUNCTIONS

Autor: Sözbir, Bayram, Altundağ, Selma, Başarır, Metin
Přispěvatelé: Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Volume: 2, Issue: 1 1-8
Maltepe Journal of Mathematics
ISSN: 2667-7660
Popis: In this paper, we introduce the concept of ∆f -lacunary statistical convergence for a ∆-measurable real-valued function defined on time scale, where f is an unbounded modulus. Our motivation here is that this definition includes many well-known concepts which already exist in the literature. We also define strong ∆f -lacunary Cesaro summability on a time scale and give some results related to these new concepts. Furthermore, we obtain necessary and sufficient conditions for the equivalence of ∆f-convergence and ∆f -lacunary statistical convergence on a time scale.
Databáze: OpenAIRE