ON THE (DELTA,f)-LACUNARY STATISTICAL CONVERGENCE OF THE FUNCTIONS
Autor: | Sözbir, Bayram, Altundağ, Selma, Başarır, Metin |
---|---|
Přispěvatelé: | Maltepe Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Volume: 2, Issue: 1 1-8 Maltepe Journal of Mathematics |
ISSN: | 2667-7660 |
Popis: | In this paper, we introduce the concept of ∆f -lacunary statistical convergence for a ∆-measurable real-valued function defined on time scale, where f is an unbounded modulus. Our motivation here is that this definition includes many well-known concepts which already exist in the literature. We also define strong ∆f -lacunary Cesaro summability on a time scale and give some results related to these new concepts. Furthermore, we obtain necessary and sufficient conditions for the equivalence of ∆f-convergence and ∆f -lacunary statistical convergence on a time scale. |
Databáze: | OpenAIRE |
Externí odkaz: |