Autor: |
Burg, L.R.A. van der, Kuijk, S.M.J. van, Wee, M.M. ter, Heymans, M.W., Rijk, A.E. de, Geuskens, G.A., Ottenheijm, R.P.G., Dinant, G.J., Boonen, A. |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
BMC Public Health, 1, 20, 699 |
Popis: |
Background: Societal expenditures on work-disability benefits is high in most Western countries. As a precursor of long-term work restrictions, long-term sickness absence (LTSA) is under continuous attention of policy makers. Different healthcare professionals can play a role in identification of persons at risk of LTSA but are not well trained. A risk prediction model can support risk stratification to initiate preventative interventions. Unfortunately, current models lack generalizability or do not include a comprehensive set of potential predictors for LTSA. This study is set out to develop and validate a multivariable risk prediction model for LTSA in the coming year in a working population aged 45-64 years. Methods: Data from 11,221 working persons included in the prospective Study on Transitions in Employment, Ability and Motivation (STREAM) conducted in the Netherlands were used to develop a multivariable risk prediction model for LTSA lasting ≥28 accumulated working days in the coming year. Missing data were imputed using multiple imputation. A full statistical model including 27 pre-selected predictors was reduced to a practical model using backward stepwise elimination in a logistic regression analysis across all imputed datasets. Predictive performance of the final model was evaluated using the Area Under the Curve (AUC), calibration plots and the Hosmer-Lemeshow (H&L) test. External validation was performed in a second cohort of 5604 newly recruited working persons. Results: Eleven variables in the final model predicted LTSA: older age, female gender, lower level of education, poor self-rated physical health, low weekly physical activity, high self-rated physical job load, knowledge and skills not matching the job, high number of major life events in the previous year, poor self-rated work ability, high number of sickness absence days in the previous year and being self-employed. The model showed good discrimination (AUC 0.76 (interquartile range 0.75-0.76)) and good calibration in the external validation cohort (H&L test: p = 0.41). Conclusions: This multivariable risk prediction model distinguishes well between older workers with high- and low-risk for LTSA in the coming year. Being easy to administer, it can support healthcare professionals in determining which persons should be targeted for tailored preventative interventions. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|