Arabic topic identification based on empirical studies of topic models
Autor: | Naili, Marwa, Chaibi, Anja, Ghézala, Henda |
---|---|
Přispěvatelé: | Laboratoire de recherche en Génie Logiciel, Applications distribuées, Systèmes décisionnels et Imagerie intelligente [Manouba] (RIADI), École Nationale des Sciences de l'Informatique [Manouba] (ENSI), Université de la Manouba [Tunisie] (UMA)-Université de la Manouba [Tunisie] (UMA) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing
Topic identification Arabic stemmers Topic models ACM : I.2.7.6 Allocation de Dirichlet Latente hyper-paramètres α et β de LDA [INFO.INFO-TT] Computer Science [cs]/Document and Text Processing ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE/I.2.7: Natural Language Processing/I.2.7.6: Text analysis Latent Dirichlet Allocation LDA hyper- parameters α and β Identification thématique lemmatiseurs Arabes |
Zdroj: | Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2017, Volume 27-2017-Special issue CARI 2016 |
ISSN: | 1638-5713 |
Popis: | This paper focuses on the topic identification for the Arabic language based on topic models. We study the Latent Dirichlet Allocation (LDA) as an unsupervised method for the Arabic topic identification. Thus, a deep study of LDA is carried out at two levels: Stemming process and the choice of LDA hyper-parameters. For the first level, we study the effect of different Arabic stemmers on LDA. For the second level, we focus on LDA hyper-parameters α and β and their impact on the topic identification. This study shows that LDA is an efficient method for Arabic topic identification especially with the right choice of hyper-parameters. Another important result is the high impact of the stemming algorithm on topic identification. Cet article met l'accent sur l'identification thématique pour la langue arabe basée sur les topic models. Nous étudions l'Allocation de Dirichlet Latente (LDA) comme une méthode non supervisée pour l'identification thématique. Ainsi, une étude approfondie de LDA a été effectuée à deux niveaux: le processus de lemmatisation et le choix des hyper-paramètres. Pour le premier niveau, nous étudions l'effet des différents lemmatiseurs sur LDA. Pour le deuxième niveau, nous nous focalisons sur les hyper-paramètres α et β de LDA et leurs impacts sur l'identification. Cette étude montre que LDA est une méthode efficace pour l'identification thématique Arabe surtout avec le bon choix des hyper-paramètres. Un autre résultat important est l'impact élevé de l'algorithme de lemmatisation sur l'identification thématique. |
Databáze: | OpenAIRE |
Externí odkaz: |