Chi-Squared Goodness of Fit Tessts with Applications
Autor: | Nikulin, Mikhail, Voinov, Vassily, Balakrishnan, N. |
---|---|
Přispěvatelé: | Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), KIMEP, Almaty, Kazakhstan |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
[STAT.AP]Statistics [stat]/Applications [stat.AP]
Goodness-of-fit Hsuan-Robson-Mirvaliev test [STAT.TH]Statistics [stat]/Statistics Theory [stat.TH] Dzhaparidze-Nikulin test Wald's methods Chi-Squared test Nikulin-Rao-Robson (NRR) test [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] Pearson-Fisher tests Modified Chi-squared test Pearson tests Vector Valued test [STAT.CO]Statistics [stat]/Computation [stat.CO] |
Zdroj: | Academic Press: ELSEVIER, 229 p., 2013, 978-0-12-397-194-4 |
Popis: | 229 pages; International audience; Many parametric models, possesing different characteristics, shapes, and properties, considered. These models are commonley used to develop parametric inferential methods, which critically depend on the specific parametric model for the analysis of the observed data. For this reson, several model validation techniques and goodness-of-fit tests have been developped over the years. The oldest and perhaps the most commonly used one among these is the chi-squared goodness-of-fit test proiposed by Karl Pearson over a century ago. Since then, many modifications, extensions, anf generalizations of this methodology have been discuss in the statistical literature. This process is studied in considered book. |
Databáze: | OpenAIRE |
Externí odkaz: |