Popis: |
Building developers are continuously seeking solutions to increase saleable/rentable floor area and thus the profitability of investments, especially in large/dense cities where the real estate/rental values are high and shortage of available land results in smaller building footprints. Application of passive energy efficiency measures (e.g., thick insulation in walls) not only affects the life cycle sustainability of buildings, but also the floor area and its profitability. This can affect the decisions made on the choice of measures when aiming to improve sustainability. In line with limited studies in this context, a case study is presented here in which multi-objective optimization was used to explore the impact of various passive energy efficiency measures on the life cycle sustainability when accounting for the profitability of the floor area. The building case was a high-rise apartment based on a standardized building concept situated in different locations in Sweden, namely Vindeln, Gothenburg, and Stockholm. The findings indicated that, regardless of the location, use of (1) thick cellulose coating for the roof, and (2) moderately thick expanded polystyrene for the floor, were necessary to improve the life cycle sustainability. However, the optimal wall insulation was dependent on the location; in locations with high real estate values, the scope for using thick and conventional insulations (mineral wool/cellulose) was limited due to the significant economic loss caused by floor area reductions. In general, the optimization identified optimal solutions that could save up to 1410.7 GJ energy, 23 tonnes CO(2)e, and 248.4 TEUR cost from a life cycle perspective relative to the building's initial design. |