Radiation-Hardened Mixed-signal ASICs Design for Space Observatories

Autor: Si CHEN
Přispěvatelé: AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université de Paris, Damien Prêle, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Paris Cité, Université Paris Diderot
Jazyk: angličtina
Rok vydání: 2019
Předmět:
WFEE
Librairie numérique durcie aux radiations
SQUID bias
Référence de courant
Observatoire spatial à rayons X
Warm Front-End Electronics
Low noise amplifier
X-Ray space observatory
Mixed- signal electronics
Mixed-signal electronics
[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
Référence de courant
Observatoire spatial à rayons X
Électronique mixte
X-IFU
Current reference
[PHYS.PHYS]Physics [physics]/Physics [physics]
Warm Front End Electronics
ASIC
Polarisation de SQUID
Microelectronic instrumentation
Instrumentation microélectronique
Électronique mixte
Librairie numérique durcie aux radiations
Amplifi- cateur à bas bruit
Instrumentation microélectronique
Radiation-hardened digital library
Amplificateur à bas bruit
Zdroj: Physics [physics]. Université de Paris, 2019. English. ⟨NNT : 2019UNIP7051⟩
Physics [physics]. Université Paris Cité, 2019. English. ⟨NNT : 2019UNIP7051⟩
HAL
Micro and nanotechnologies/Microelectronics. Université Paris Diderot, 2019. English
Popis: The subject of my thesis is the development of radiation-hardened mixed-signal Application- Specific Integrated Circuits (ASICs) for space observatories. The thesis takes place in the context of a future X-ray space observatory of the European Space Agency, named Advanced Telescope for High ENergy Astrophysics (ATHENA). The ASICs developed belong to one of the two scientific instruments of the observatory, called X-ray Integral Field Unit (X-IFU) and are dedicated to one of the subsystems of the X-IFU instrument, the WFEE (Warm Front End Electronics).The WFEE is a mixed electronic system, mainly including a Low Noise Amplifier (LNA), a configurable SQUID bias, a buffer and a thermometer. Consequently, my thesis work is composed of two parts: the digital part and the analogue part.My contributions to the digital microelectronics of the WFEE are presented in Part III of my thesis. It includes the design of a new radiation-hardened digital library and the creation of a new I2C decoder with optimised schematic and layout, made of my new digital library. The representative radiation assessment results concerning the components and 8-bit registers with such radiation-hardened design are also discussed in Part III of the thesis. All the digital circuits of the two new ASICs “AwaXe_v2” and “AwaXe_v2.5” are made of this new radiation-hardened digital library, as well as those in the future ASICs. The optimised I2C decoders have been proved a good functioning along with the other circuits, integrated into the “AwaXe_v2” and “AwaXe_v2.5”.My contributions on the analogue circuits of the WFEE are presented in Part IV. It includes the design of an LNA, a buffer, a current reference and a Digital-to-Analog Converter (DAC). The LNA is critical for fulfilling the unprecedented high spectral resolution of 2.5 eV proposed by the X-IFU instrument. Its original design has been integrated into the ASICs v2 and v2.5, both fully tested and showing satisfying and coherent results. Its performance has been experimentally proved to fulfil all the specifications required by the CNES. Operating within the frequency band of 1 – 5 MHz, it provides a super-linear voltage gain of 85 V/V, with a large bandwidth of –1 dB up to 17.5 MHz and a low gain drift < 350 ppm/K. It realises an ultra-low voltage noise ≈ 0.8 nV/√Hz at the input, as well as a low 1/f noise corner frequency < 4 kHz, a good PSRR and CMRR. The buffer uses a similar design as the LNA and needs to be further studied in future work. The current reference has been fully tested with an output of 1 mA. Thanks to its original design compensating a CTAT and a PTAT reference, it has been proved to be capable of providing a super-stable temperature independent current, perfect for the SQUID bias. At last, I have also developed an 8-bit DAC for the SQUID bias. 8 DACs along with a current reference and a series bus compose a complete SQUID bias of one WFEE channel. This circuit has been integrated into the ASIC “AwaXe_v2.5” and showed a good result for the first measurement.In conclusion, my thesis has yielded two ASICs for the WFEE: “AwaXe_v2” and “AwaXe_v2.5”. Both ASICs show good performance. In particular, the last ASIC integrates all the compo- nents of one WFEE channel, which can be considered as a prototype. Thus, it is a good representative of my work. Moreover, the high performance of the LNA and the current reference also give them the potential to adapt with other similar scientific missions.; Le sujet de ma thèse est la conception d’ASICs (Application-Specific Integrated Circuits) mixtes durcis aux radiations pour observatoires spatiaux. La thèse se déroule dans le contexte d’un futur observatoire spatial à rayons X de l’ESA, se nomme “Advanced Telescope for High ENergy Astrophysics (ATHENA)”. Les ASICs développés appartiennent à l’un des deux instruments scientifiques de cet observatoire, s’appelle “X-ray Integral Field Unit (X-IFU)”, et sont dédiés à l’un des sous-systèmes de l’instrument X-IFU, le WFEE (Warm Front End Electronics).Le WFEE est un système électronique mixte comprenant principalement un amplificateur à bas bruit (LNA), un circuit de polarisation configurable pour SQUIDs, un buffer et un thermomètre. Par conséquent, mes travaux de thèse sont composés de deux parties: la partie numérique et la partie analogique.Mes contributions aux circuits numériques du WFEE sont présentées dans “Part III” de ma thèse. Elles comprennent la conception d’une nouvelle librairie des portes logiques numériques durcies aux radiations et la création d’un nouveau décodeur I2C avec ses schémas et layouts optimisés, en utilisant ma nouvelle librairie numérique. Les résultats représentatifs des essais de radiation sur les composants et les registres à 8-bit avec une telle conception durcie aux radiations sont également discutés dans “Part III” de ma thèse. Tous les circuits numériques dans les deux nouveaux ASICs “AwaXe_v2” et “AwaXe_v2.5” sont constitués de cette nouvelle librairie numérique durcie aux radiations, ainsi que ceux dans les futurs ASICs. Les décodeurs I2C optimisés ont prouvé un bon fonctionnement, testés avec les autres circuits intégrés dans “AwaXe_v2” et “AwaXe_v2.5”.Mes contributions sur les circuits analogiques du WFEE sont présentées dans “Part IV”. Elles comprennent la conception d’un LNA, d’un buffer, d’une référence de courant et d’un convertisseur numérique-analogique (DAC). Le LNA est essentiel pour atteindre la résolution spectrale élevée sans précédent de 2.5 eV proposée par l’instrument X-IFU. Il a une conception originale, intégrée dans les ASICs v2 et v2.5. Il a été entièrement testée et a donné des résultats satisfaisants et cohérents. Ses performances ont été prouvées expérimentalement pour répondre à toutes les spécifications requises par le CNES. Fonctionnant dans la bande de fréquence de 1 – 5 MHz, il fournit un gain de tension super-linéaire de 85 V/V, une large bande passante de –1 dB à 17.5 MHz et une faible dérive de gain < 350 ppm/K. Il réalise un très faible bruit à tension ≈ 0.8 nV/√Hz à l’entrée, ainsi qu’une faible fréquence de coupure de bruit 1/f < 4 kHz, un bon PSRR et un bon CMRR. Le buffer utilise une conception similaire à celle du LNA et a besoin plus d’études dans les travaux futurs. La référence de courant a été entièrement testée avec une sortie de 1 mA. Grâce à sa conception originale, qui compense les références CTAT et PTAT, elle est capable de fournir un courant super stable, indépendant de la température, parfaite pour la polarisation de SQUID. Enfin, j’ai également développé un DAC à 8-bit pour la polarisation de SQUID. 8 DACs, une référence de courant et un bus série composent un circuit complet de la polarisation de SQUID d’un canal WFEE. Ce circuit a été intégré dans l’ASIC “AwaXe_v2.5” et a donné un bon résultat lors de la première mesure.En conclusion, ma thèse a produit deux ASICs pour le WFEE: “AwaXe_v2” et “AwaXe_v2.5”. Les deux ASICs montrent de bonnes performances. En particulier, le dernier ASIC intègre tous les composants d’un canal WFEE, ce qui peut être considéré comme un prototype. Ainsi, il est un bon représentant de mes travaux de la thèse. En outre, les performances élevées du LNA et de la référence de courant aussi montrent le potentiel pour s’adapter à d’autres missions scientifiques similaires.
Databáze: OpenAIRE