A Natural Formalism and a Multi-Agent Algorithm for Integrative Multidisciplinary Design Optimization (Workshop @ AAMAS 2013)

Autor: Jorquera, Tom, Georgé, Jean-Pierre, Gleizes, Marie-Pierre, Couellan, Nicolas, Noël, Victor, Régis, Christine
Přispěvatelé: Grélaud, Françoise, Systèmes Multi-Agents Coopératifs (IRIT-SMAC), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Institut de Mathématiques de Toulouse UMR5219 (IMT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: International Workshop on Optimisation in Multi-Agent Systems @ Twelfth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013)
International Workshop on Optimisation in Multi-Agent Systems @ Twelfth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), May 2013, Saint Paul, Minnesota, United States. pp.1-18
Popis: International audience; MultiDisciplinary Optimization (MDO) problems represent one of the hardest and broadest domains of continuous optimization. By involving both the models and criteria of different disciplines, MDO problems are often too complex to be tackled by classical optimization methods. We propose an approach for taking into account this complexity using a new formalism (NDMO - Natural Domain Modeling for Optimization) and a self-adaptive multi-agent algorithm. Our method agentifies the different elements of the problem (such as the variables, the models, the objectives). Each agent is in charge of a small part of the problem and cooperates with its neighbors to find equilibrium on conflicting values. Despite the fact that no agent of the system has a complete view of the entire problem, the mechanisms we provide make the emergence of a coherent solution possible. Evaluations on several academic and industrial test cases are provided.
Databáze: OpenAIRE