The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra

Autor: Parmentier, F.J.W., Huissteden, J. Van, Kip, N., Camp, H.J.M. op den, Jetten, M.S.M., Maximov, T.C., Dolman, A.J.
Přispěvatelé: Hydrology and Geo-environmental sciences
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Parmentier, F-J W, Van Huissteden, J, Kip, N, Op Den Camp, H J M, Jetten, M S M, Maximov, T C & Dolman, A J 2011, ' The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra ', Biogeosciences, vol. 8, no. 5, pp. 1267-1278 . https://doi.org/10.5194/bg-8-1267-2011
Parmentier, F J W, van Huissteden, J, Kip, N, Op den Camp, H J M, Jetten, M S M, Maximov, T C & Dolman, A J 2011, ' The role of endophytic methane oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra ', Biogeosciences, vol. 8, no. 5, pp. 1267-1278 . https://doi.org/10.5194/bg-8-1267-2011
Biogeosciences Discussions, 7, 8521-8551
Biogeosciences, 8(5), 1267-1278. European Geosciences Union
Biogeosciences, Vol 8, Iss 5, Pp 1267-1278 (2011)
Biogeosciences Discussions, 7, 6, pp. 8521-8551
ISSN: 1810-6285
1726-4170
1726-4189
DOI: 10.5194/bg-8-1267-2011
Popis: The role of the microbial processes governing methane emissions from tundra ecosystems is receiving increasing attention. Recently, cooperation between methanotrophic bacteria and submerged Sphagnum was shown to reduce methane emissions but also to supply CO2 for photosynthesis for the plant. Although this process was shown to be important in the laboratory, the differences that exist in methane emissions from inundated vegetation types with or without Sphagnum in the field have not been linked to these bacteria before. In this study, chamber flux measurements, an incubation study and a process model were used to investigate the drivers and controls on the relative difference in methane emissions between a submerged Sphagnum/sedge vegetation type and an inundated sedge vegetation type without Sphagnum. It was found that methane emissions in the Sphagnum-dominated vegetation type were 50 % lower than in the vegetation type without Sphagnum. A model sensitivity analysis showed that these differences could not sufficiently be explained by differences in methane production and plant transport. The model, combined with an incubation study, indicated that methane oxidation by endophytic bacteria, living in cooperation with submerged Sphagnum, plays a significant role in methane cycling at this site. This result is important for spatial upscaling as oxidation by these bacteria is likely involved in 15 % of the net methane emissions at this tundra site. Our findings support the notion that methane-oxidizing bacteria are an important factor in understanding the processes behind methane emissions in tundra.
Databáze: OpenAIRE