Bio-based aerogels: a new generation of thermal super-insulating materials
Autor: | Rudaz, Cyrielle, Demilecamps, Arnaud, Pour, Georg, Alves, Margot, Rigacci, Arnaud, Sallee, Hébert, Reichenauer, Gudrun, Budtova, Tatiana |
---|---|
Přispěvatelé: | Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre Scientifique et Technique du Bâtiment (CSTB), Bavarian Center for Applied Energy Research (ZAE Bayern), This work was funded within the 7th EU Framework Program, (FP7/2007-2013), under grant agreement no. 260141, 'AEROCOINS' project, by French National Research Agency (ANR), 'NANOCEL' project ANR-09-HABISOL-010 and by ADEME, France, 'SILICA-CELL' project. |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | EMN (Energy, Materials, Nanotechnology) Meeting on Polymer EMN (Energy, Materials, Nanotechnology) Meeting on Polymer, Jan 2015, Orlando, United States |
Popis: | International audience; Aerogels are highly porous, ultra-light (density around 0.1 g/cm3) nanostructured materials. One of their most extraordinary properties is thermal super-insulation, i.e. thermal conductivity below that of the air: 0.015 vs 0.025 W/(m.K) in room conditions. However, classical silica aerogels are extremely fragile and organic/synthetic (resorcinol-formaldehyde) aerogels may include toxic components, which hinders their wide application. Bio-aerogels are a new generation of aerogels made from biomass-based polymers, mainly polysaccharides. We prepared aerogels from cellulose (“aerocellulose” /1, 2/) and pectin (“aeropectin” /3/) via polymer dissolution, coagulation and drying with super-critical CO2. Their density varies from 0.05 to 0.2 g/cm3 and specific surface area is around 200-300 m2/g. Bio-aerogels are mechanically strong, with Young’s moduli from 1-2 to 20-30 MPa and plastic deformation up to 60-70% strain before the pore walls collapse. Aeropectin thermal conductivity turned to be around 0.015 – 0.020 W/(m.K) making it the first reported thermal super-insulating fully biomass-based aerogel. The thermal conductivity of aerocellulose is rather “high”, around 0.030-0.035 W/(m.K), due to the presence of large macropores. We demonstrate that by using polysaccharide functionalization and making polymer-silica aerogel hybrids it is possible to vary specific surface area (increase to 800-900 m2/g) and decrease aerogel thermal conductivity below that of the air. |
Databáze: | OpenAIRE |
Externí odkaz: |