Machine learning methods in electronic nose analysis
Autor: | Rodriguez Lujan, Irene, Fonollosa Magrinyà, Jordi|||0000-0001-8854-8588, Huerta, Ramon |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Recercat. Dipósit de la Recerca de Catalunya instname UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | The main existent tool to monitor chemical environ- ments in a continuous mode is gas sensor arrays, which have been popularized as electronic noses (enoses). To design and validate these monitoring systems, it is necessary to make use of machine learning techniques to deal with large amounts of heterogeneous data and extract useful information from them. Therefore, enose data present several challenges for each of the steps involved in the design of a machine learning system. Some of the machine learning tasks involved in this area of research include generation of operational patterns, detection anomalies, or classification and discrimination of events. In this work, we will review some of the machine learning approaches adopted in the literature for enose data analysis, and their application to three different tasks: single gas classification under tightly-controlled operating conditions, gas binary mixtures classification in a wind tunnel with two independent gas sources, and human activity monitoring in a NASA spacecraft cabin simulator. |
Databáze: | OpenAIRE |
Externí odkaz: |