Spatial interpolation using mixture distributions: A Best Linear Unbiased Predictor

Autor: Grossouvre, Marc, Rullière, Didier, Villot, Jonathan
Přispěvatelé: URBS, École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT), Institut Henri Fayol (FAYOL-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Département Génie mathématique et industriel (FAYOL-ENSMSE), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Institut Henri Fayol, Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), Département Génie de l’environnement et des organisations (FAYOL-ENSMSE), Institut Henri Fayol-Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE), Environnement, Ville, Société (EVS), École normale supérieure de Lyon (ENS de Lyon)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-École Nationale des Travaux Publics de l'État (ENTPE)-École nationale supérieure d'architecture de Lyon (ENSAL)-Centre National de la Recherche Scientifique (CNRS), U.R.B.S. SAS, Mines Saint-Etienne, ANRT
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Popis: This paper deals with three related problems in a geostatistical context. First, some data are available for given areas of the space rather than for some point locations which creates problems of multiscale areal data. Second, some uncertainties rely both on the input locations and on measured quantities at these locations, involving uncertainty propagation problems. Third, multidimensional outputs can be observed, with sometimes missing data.These three problems are addressed simultaneously here by considering mixtures of multivariate random fields and by adapting standard Kriging methodology to this context. While the usual Gaussian setting is lost, we show that conditional mean, variance and covariance can be derived from this specific setting. Case studies are presented both with simulated data and real data. In particular, we discuss the question of information loss in learning buildings energy efficiency.
Databáze: OpenAIRE